
Sesquiterpenes and lignans from the flower buds of Daphne genkwa and their nitric oxide inhibitory activities.

http://researchonline.ljmu.ac.uk/7483/

Citation (please note it is advisable to refer to the publisher's version if you intend to cite from this work)

LJMU has developed LJMU Research Online for users to access the research output of the University more effectively. Copyright © and Moral Rights for the papers on this site are retained by the individual authors and/or other copyright owners. Users may download and/or print one copy of any article(s) in LJMU Research Online to facilitate their private study or for non-commercial research. You may not engage in further distribution of the material or use it for any profit-making activities or any commercial gain.

The version presented here may differ from the published version or from the version of the record. Please see the repository URL above for details on accessing the published version and note that access may require a subscription.

For more information please contact researchonline@ljmu.ac.uk

http://researchonline.ljmu.ac.uk/
Sesquiterpenes and lignans from the flower buds of Daphne genkwa and their nitric oxide inhibitory activities

Chun-Yang Zhanga, Lan-Luob,*, Jing Xiac, Ya-Nan Songa, Li-Jun Zhanga, Miao Zhanga, Khalid Rahmand, Yin Yea, Hong Zhanga, and Jian-Yong Zhua,*

aCentral Laboratory, Seventh People’s Hospital of Shanghai University of TCM, Shanghai 200137, P. R. China

bDepartment of pharmacy, Seventh People’s Hospital of Shanghai University of TCM, Shanghai 200137, P. R. China

cResearch Institute of Chinese Materia Medica, Guangzhou Baiyun Mountain and Hutchison Whampoa Ltd. Guangzhou 51000, P. R. China

dFaculty of Science, School of Biomolecular Sciences, Liverpool John Moores University, Liverpool L3 3AF, U.K.

* Corresponding author

E-mail address: Lan-Luo: LL4820703@163.com

Jian-Yong Zhu: jyzhu@foxmail.com

Abstract: Chemical investigation of the Daphne genkwa has led to the isolation of four sesquiterpenes (1a/1b, 2, and 3), including one pair of sesquiterpene enantiomers (1a/1b). 1a is a new compound (+)-4-Hydroxy-10-epirotundone, and twelve lignans (4–15). Their structures were elucidated by spectroscopic analysis, and the absolute configurations of 1a/1b were determined by CD analysis. All compounds were examined for their inhibitory effects on the nitric oxide (NO) production induced by lipopolysaccharide (LPS) in BV-2 microglial cells, and compounds 7–10 exhibited pronounced inhibition on NO production with IC\textsubscript{50} values in the range of 5.8–10.2 \mu M, being more active than the positive control, quercetin (IC\textsubscript{50} = 17.0 \mu M).

Keywords: Daphne genkwa; Sesquiterpene; Lignan; Nitric Oxide
List of content

Table S1. 1H NMR (400 MHz) and 13C NMR (100 MHz) data of compound 1 in CDCl$_3$ (δ in ppm, J in Hz).

Figure S1. Selected 1H–1H COSY (–) and HMBC (→) correlations of 1.

Figure S2. Key NOE correlations (↔) of 1.

Figure S3. The CD spectrum of 1a and 1b.

Figure S4. 1H NMR (400 MHz, CDCl$_3$) spectrum of 1.

Figure S5. 13C NMR (100 MHz, CDCl$_3$) spectrum of 1.

Figure S6. 1H–1H COSY spectrum of 1 in CDCl$_3$.

Figure S7. HSQC spectrum of 1 in CDCl$_3$.

Figure S8. HMBC spectrum of 1 in CDCl$_3$.

Figure S9. NOESY spectrum of 1 in CDCl$_3$.

Figure S10. HRESIMS spectrum of 1.

Figure S11. IR (KBr disc) spectrum of 1.

Figure S12. 1H NMR (600 MHz, CDCl$_3$) spectrum of 2.

Figure S13. 13C NMR (150 MHz, CDCl$_3$) spectrum of 2.

Figure S14. 1H NMR (400 MHz, CDCl$_3$) spectrum of 3.

Figure S15. 13C NMR (100 MHz, CDCl$_3$) spectrum of 3.

Figure S16. 1H NMR (600 MHz, CDCl$_3$) spectrum of 4.

Figure S17. 13C NMR (150 MHz, CDCl$_3$) spectrum of 4.

Figure S18. 1H NMR (600 MHz, CD$_3$OD) spectrum of 5.

Figure S19. 13C NMR (150 MHz, CD$_3$OD) spectrum of 5.

Figure S20. 1H NMR (600 MHz, CDCl$_3$) spectrum of 6.

Figure S21. 13C NMR (150 MHz, CDCl$_3$) spectrum of 6.

Figure S22. 1H NMR (600 MHz, CDCl$_3$) spectrum of 7.

Figure S23. 13C NMR (150 MHz, CDCl$_3$) spectrum of 7.

Figure S24. 1H NMR (600 MHz, CDCl$_3$) spectrum of 8.

Figure S25. 13C NMR (150 MHz, CDCl$_3$) spectrum of 8.

Figure S26. 1H NMR (600 MHz, CDCl$_3$) spectrum of 9.
Figure S27. 13C NMR (150 MHz, CDCl$_3$) spectrum of 9
Figure S28. 1H NMR (600 MHz, CDCl$_3$) spectrum of 10
Figure S29. 13C NMR (150 MHz, CDCl$_3$) spectrum of 10
Figure S30. 1H NMR (600 MHz, CDCl$_3$) spectrum of 11
Figure S31. 13C NMR (150 MHz, CDCl$_3$) spectrum of 11
Figure S32. 1H NMR (600 MHz, CDCl$_3$) spectrum of 12
Figure S33. 13C NMR (150 MHz, CDCl$_3$) spectrum of 12
Figure S34. 1H NMR (600 MHz, CDCl$_3$) spectrum of 13
Figure S35. 13C NMR (150 MHz, CDCl$_3$) spectrum of 13
Figure S36. 1H NMR (600 MHz, CDCl$_3$) spectrum of 14
Figure S37. 13C NMR (150 MHz, CDCl$_3$) spectrum of 14
Figure S38. 1H NMR (600 MHz, CDCl$_3$) spectrum of 15
Figure S39. 13C NMR (150 MHz, CDCl$_3$) spectrum of 15
Table S1. 1H NMR (400 MHz) and 13C NMR (100 MHz) data of compound 1 in CDCl$_3$ (δ in ppm, J in Hz).

<table>
<thead>
<tr>
<th>No.</th>
<th>$\delta$$_H$</th>
<th>$\delta$$_C$</th>
<th>No.</th>
<th>$\delta$$_H$</th>
<th>$\delta$$_C$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>145.0, C</td>
<td>8b</td>
<td>1.61, m</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>204.8, C</td>
<td>9a</td>
<td>1.97, m</td>
<td></td>
</tr>
<tr>
<td>3a</td>
<td>2.54, 1H, d (3.5)</td>
<td>51.5, CH</td>
<td>9b</td>
<td>1.70, m</td>
<td></td>
</tr>
<tr>
<td>3b</td>
<td>2.55, 1H, d (3.5)</td>
<td></td>
<td>10</td>
<td>2.80, m</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>76.4, C</td>
<td>11</td>
<td></td>
<td>149.4, C</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>173.8, C</td>
<td>12a</td>
<td>4.78, d (1.4)</td>
<td>110.2, CH$_2$</td>
</tr>
<tr>
<td>6a</td>
<td>2.63, m</td>
<td>28.6, CH$_2$</td>
<td>12b</td>
<td>4.75, d (1.4, 1.4)</td>
<td></td>
</tr>
<tr>
<td>6b</td>
<td>2.50, m</td>
<td></td>
<td>13</td>
<td>1.76, s</td>
<td></td>
</tr>
<tr>
<td>7a</td>
<td>2.51, m</td>
<td>44.5, CH</td>
<td>14</td>
<td>1.12, d (7.2)</td>
<td>18.1, CH$_3$</td>
</tr>
<tr>
<td>8a</td>
<td>1.86, m</td>
<td>29.0, CH$_2$</td>
<td>15</td>
<td>1.46, s</td>
<td>26.9, CH$_3$</td>
</tr>
</tbody>
</table>

Figure S1. Selected 1H–1H COSY (→) and HMBC (→) correlations of 1.
Figure S2. Key NOE correlations (−→) of 1.

Figure S3. The CD spectrum of 1a and 1b
Figure S4. 1H NMR (400 MHz, CDCl$_3$) spectrum of 1
Figure S5. 13C NMR (100 MHz, CDCl$_3$) spectrum of 1
Figure S6. 1H-1H COSY spectrum of 1 in CDCl$_3$
Figure S7. HSQC spectrum of 1 in CDCl₃
Figure S8. HMBC spectrum of 1 in CDCl$_3$
Figure S9. NOESY spectrum of 1 in CDCl₃
Figure S10. HRESIMS spectrum of 1

YJZ97B #406 RT: 3.24 AV: 1 NL: 7.77E5
T: FTMS + p ESI Full ms [220.00-850.00]
Figure S11. IR (KBr disc) spectrum of 1
Figure S12. 1H NMR (600 MHz, CDCl$_3$) spectrum of 2
Figure S13. 13C NMR (150 MHz, CDCl$_3$) spectrum of 2
Figure S14. 1H NMR (400 MHz, CDCl$_3$) spectrum of 3
Figure S15. 13C NMR (100 MHz, CDCl$_3$) spectrum of 3
Figure S16. 1H NMR (600 MHz, CD$_3$OD) spectrum of 4
Figure S17. 13C NMR (150 MHz, CD$_3$OD) spectrum of 4
Figure S18. 1H NMR (600 MHz, CDCl$_3$) spectrum of 5
Figure S19. 13C NMR (600 MHz, CDCl$_3$) spectrum of 5

- 87.1
- 74.1
- 63.8
- 61.9
- 56.6
- 56.4
Figure S20. 1H NMR (150 MHz, CDCl$_3$) spectrum of 6
Figure S21. 13C NMR (150 MHz, CDCl$_3$) spectrum of 6
Figure S22. 1H NMR (600 MHz, CDCl$_3$) spectrum of 7
Figure S23. 13C NMR (150 MHz, CDCl$_3$) spectrum of 7
Figure S24. 1H NMR (600 MHz, CDCl$_3$) spectrum of 8
Figure S25. 1C NMR (150 MHz, CDCl$_3$) spectrum of 8

90 100 110 120 130 140 150 160 170 180

δ (ppm)
Figure S26. 1H NMR (600 MHz, CDCl$_3$) spectrum of 9
Figure S27. 13C NMR (150 MHz, CDCl$_3$) spectrum of 9.
Figure S28. 1H NMR (600 MHz, CDCl$_3$) spectrum of 10
Figure S29. 13C NMR (150 MHz, CDCl$_3$) spectrum of 10
Figure S30. 1H NMR (600 MHz, CDCl$_3$) spectrum of 11
Figure S31. 13C NMR (150 MHz, CDCl$_3$) spectrum of 11
Figure S32. 1H NMR (600 MHz, CDCl$_3$) spectrum of 12
Figure S33. 13C NMR (150 MHz, CDCl$_3$) spectrum of 12

149.0 147.1 135.8 133.6 122.2 119.8 116.2 116.0 113.5 110.7

-84.1 -73.5 -60.5 -56.4 -54.1 -43.9 -33.7

δ (ppm)
Figure S34. 1H NMR (600 MHz, CDCl$_3$) spectrum of 13
Figure S35. 13C NMR (150 MHz, CDCl$_3$) spectrum of 13
Figure S36. 1H NMR (600 MHz, CDCl$_3$) spectrum of 14
Figure S37. 13C NMR (150 MHz, CDCl$_3$) spectrum of 14

<table>
<thead>
<tr>
<th>Chemical Shift (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>147.3</td>
</tr>
<tr>
<td>146.9</td>
</tr>
<tr>
<td>145.4</td>
</tr>
<tr>
<td>134.5</td>
</tr>
<tr>
<td>133.0</td>
</tr>
<tr>
<td>132.3</td>
</tr>
<tr>
<td>119.1</td>
</tr>
<tr>
<td>114.4</td>
</tr>
<tr>
<td>108.8</td>
</tr>
<tr>
<td>102.9</td>
</tr>
<tr>
<td>86.3</td>
</tr>
<tr>
<td>86.0</td>
</tr>
<tr>
<td>72.0</td>
</tr>
<tr>
<td>71.8</td>
</tr>
<tr>
<td>56.5</td>
</tr>
<tr>
<td>56.1</td>
</tr>
<tr>
<td>54.5</td>
</tr>
<tr>
<td>54.3</td>
</tr>
</tbody>
</table>

13C NMR (150 MHz, CDCl$_3$) spectrum showing chemical shifts for various carbon atoms in compound 14.
Figure S38. 1H NMR (600 MHz, CDCl$_3$) spectrum of 15
Figure S39. 13C NMR (150 MHz, CDCl$_3$) spectrum of 15